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2. Presentation of the Problems

The liquid extrusion process has been developed on the basis
of research achievements in combining the characteristics of liq-
uid metal forging and hot extrusion and continuous casting. The
forming process can be described as follows. After the liquid
metal is poured into the extruding container, the high pressure
produced by a hydraulic press is directly applied to the solidifying
or quasisolidified metal by the punch, which makes it flow, crys-
tallize, and solidify under pressure, and then the quasisolidify-
ing metal is extruded to the entrance of the forming die and
undergoes large plastic deformation owing to the reduction of
the section; after that, the tube, bar, or shape products are formed
in the single process (Fig. 1). According to the experimental re-
search and the simulation of solidification and temperature field
of the product in the entire liquid extrusion process,[3] both liq-
uid and solid metal exist in the beginning of the process, and two
kinds of movements exist in the extrusion process: one is that the
liquid and solid metal move down as a whole until they are ex-
truded out; another is that the inner liquid metal tends to solid-
ify and its volume reduces bit by bit (V < Vt), and that the
thickness of the solidified metal increases ceaselessly (U > Ut)
(Fig. 2). For the stability of the process and the acquisition of el-
igible products, the solidifying interface of the lower part of the
liquid metal must be maintained above the exit of the forming
die all the time (Fig. 2); the ideal state is that h remains invari-
able, that is, the moving up velocity of the solidifying interface
at the bottom of the liquid metal, which is transmitted from the
solidification velocity, must not be less than the extruding ve-
locity of the punch. The correspondence of both can pledge the
continuous existence of liquid metal in the container and keep
the process as liquid extrusion, meanwhile making the products
extrude out in a completely solidified state to maintain the con-
tinuity of the procedure. To realize this target, the necessary
condition is that the extruding velocity of the punch and the
temperature field of the die must be controlled effectively. In
fact, it is by means of regulating all technologic parameters that
the stability of the forming process and the forming quality can
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1. Introduction

The liquid extrusion process, as a method of forming tube,
bar, and shape products from liquid metal in a single process, is
a kind of new metal forming technology, which has been devel-
oped in recent years. The key characteristic of this process is that
it combines solidification under pressure and large plastic de-
formation. By the process, the middle forming procedures are
needless, and the production cost can be reduced greatly. More-
over, the extruded materials can get doubly strengthened.[1]

Since this process has come into being, it has gained special at-
tention from the experts in the field of plastic forming.[2] But the
product is formed directly from liquid metal, so the control of all
kinds of key technologic parameters must be very strict. If any
of the parameters is not properly selected, the forming process
will be terminated or the products will be ineligible. This is a
multiobjective optimization problem. To solve the problem, the
knowledge base of the technologic parameters should be es-
tablished to ensure correspondence of the deforming velocity
and solidification velocity, which is just the key subject that has
cost extensive hard work of the researchers in this field. But, at
the present stage, the application of the technology is still lim-
ited in that the determination of process parameters is based on
the empirical data, and the reasonable resolution is yet to be
found. In this paper, the neural network as a modeling technol-
ogy to establish the knowledge base of technologic parameters
for shaping tubes has been explored, by which the deforming
pressure and the deferring period before applying pressure can
be precisely predicted and the optimum control of the process
can be realized.
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the system. Then, the knowledge and the experience are captured
and stored in the interconnected neurons and their connection
weights. That is to say, the interrelationship among the variables
is acquired by means of a direct learning of the practical data.
When presenting the new technological parameters, the network
can give an output that is the result of the generation and syn-
thesis of what has been learned and stored in its connection
weights, by which the prediction values of the technological pa-
rameters can be obtained and then the knowledge base of tech-
nological parameters can be established. Hence, the above
problems can be solved by establishing the knowledge base of
technological parameters on the neural network.

3. The forming of a technologic parameters
knowledge base

3.1 Neural Network Model

In this paper, an error back-propagation neural network with
three layers, including input, hidden, and output layers, is used
as a network structure for acquiring knowledge (Fig. 3). Each
node represents a neuron, which can only send its output to the
units on the upper layer and receive its input from the lower
layer. The process that takes place in the neural network to ac-
quire knowledge with the back-propagation learning algorithm
involves forward and backward transmission. The forward trans-
mission occurs when input information is presented and every
processor is fed with the weighted sum of the output of the
processor in the previous layer and produces an output through
an activation function, and the output signal is subsequently
transmitted to the next layer. The backward phase occurs when
the estimated output is not sufficiently close to the desired out-
put, that is, the error signal is propagated back along the primary
path. The connection weights are adjusted by using a gradient
decent method until the optimum value is achieved.

When feeding forward, the output of node i is defined as
follows:

(Eq 1)O f Xi i= 1( )

be pledged. But the liquid extrusion process involves a series of
complex systems such as metallurgy, heat transfer, plastic de-
formation, and so on. There is great difficulty in building pre-
cious mathematical models. So establishing a knowledge base of
technologic parameters is very important.

Generally, the knowledge acquisition for traditional expert
systems relies on artificial transplant. The expert knowledge,
which is obtained from the correlative fields indirectly, is stored
via computer as regular form. However, since it is very difficult
to describe with certainty the knowledge for many fields, more-
over, the traditional expert systems cannot directly learn the
knowledge from the situation of the field, it is not easy to estab-
lish the feasible expert system.

An artificial neural network has been employed with notable
success in a wide range of areas such as the modeling of systems
with unclear process, material designing and optimum control-
ling, and so on.[4,5] It provides a feasible method for systems with
several variables that cannot be described by mathematical
model. In a network, the knowledge is represented by means of
many interconnected neurons and their connection weights. The
acquisition of knowledge involves learning the sample library
obtained from the practical process by experts according to a
special learning algorithm. The connection weights are modified
during the learning, until the network satisfies the error value of

Fig. 1 Schematic diagram of the liquid extrusion process

Fig. 2 Varying pattern of liquid and solid areas during the liquid extrusion process. (a) The deferring period is t. (b) The deferring period is t1 = t +.
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(Eq 2)

In both equations, ωi,k is the connection weight between the
current node and node k in the preceding layer; Ok is the output
of node k; θi is the threshold value of node i in the current layer;
and f (·) is the activation function in this research, which is de-
fined as follows:

(Eq 3)

The objective function of the training network is defined as
follows:

(Eq 4)

Here, M is the number of training samples; Q is the number
of output layer nodes; and dj is the desired output.

By modifying the learning parameters ωi,k and θi,E tends to
the minimum value; then, the error-correction formula is

(Eq 5)

In this equation, ∆ωi,k (m) = ωi,k (m) − ωi,k (m− 1); η ∈ (0,1) is a
learning rate, α ∈ (0, 1) is a momentum factor, and m is the cur-
rent number of iterations.

∆ω ∂
∂ω α∆ωηi k

i k
i km E m

m
m,

,
,( ) ( )

( )
( )= − −

− + −1
1

1

E
d O

M Q

p
j

p
j

j

Q

p

M

=
−

•
==
∑∑ ( )2

11

f X
ei i Xi

( ) = + −
1

1

X Oi
k

k i= −∑ω θi k,

3.2 Establishing the Knowledge Base of the Technological
Parameters

By adopting the AlCuSiMg alloy as the experimental mate-
rial (Table 1), experiments for forming tubes by the liquid ex-
trusion process were undertaken by a 3150 KN hydraulic press.
By varying the process parameters, such as the pouring temper-
ature of liquid metal (T1), the die temperature (T2), the deform-
ing velocity (n), and the deferring period before applying
pressure (t), and so on, 125 sets of experimental data were col-
lected as the sample library.

During the liquid extrusion process, the technological param-
eters are conditioned to each other. Among them, the deforming
pressure and the deferring period before applying pressure have
significant influence on forming quality. Considering all of the
factors, the deforming pressure is defined as follows:

(Eq 6)

The deferring period before applying pressure is defined as
follows:

(Eq 7)

where

F is deforming pressure of liquid extrusion,
t is deferring period before applying pressure,
T1 is pouring temperature of liquid metal,
T2 is temperature of the die before pouting liquid metal,
ν is deforming velocity, and
ζ is parameter relevant to the material.

For improvement of the convergent speed of the network and
the prediction precision of the knowledge base, this paper pres-
ents an attempt at simulating the deforming pressure and the de-
ferring period before applying pressure separately by making
use of two networks, the BPF and BPT. The steps of acquiring
knowledge can be described in the following discussion.

Step 1 was to construct the training sample library. The 105
sets of data were selected from 125 sets of experimental data
of liquid extruding tubes, which were used for training the net-
work, and the remaining 20 sets of data were used as the test-
ing sample library.

Step 2 was to initialize the neural network. There were four
nodes in the input layer, which denote the four parameters T1,
T2, n, and t or F, respectively. There was one node in the out-
put layer, which denoted the deforming pressure F or the de-
ferring period before applying pressure t (Fig. 3). The number
of hidden layer nodes can be randomly selected according to
the practical requirement, which is ten for the BPF network and
eight for the BPT network in this paper. The initial weights of
the network were selected between −0.5 and 0.5 at random.

Step 3 was to train the BPF and BPT networks separately by
using the BP learning algorithm introduced before. By modify-
ing the connection weights and threshold values in an iterative
process, the expected accuracy could be achieved at last.

Step 4 was to input the testing sample library (20 sets) to ver-
ify the reliability of the network.

t f T F= [ ( ( ( ( ]1 2ζ ζ ζ ζ) ) ) ),Τ ,ν ,

F f T t= [ ( ( ( ]1 2ζ) ζ) ζ) ζ),Τ ,ν ,(Fig. 3 Illustration of a three-layer back-propagation neural network

Table 1 The chemical composition of the experimental
alloy, Wt.%

Cu Si Mg Al

4.0–5.0 0.11 0.07 Bal.
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4. Examples

In this paper, the software of the corresponding knowledge
base is written by the C programming language according to the
BP learning algorithm. Here, the BPT network for simulating the
deferring period before applying pressure is taken as an exam-
ple to illustrate the establishment of the knowledge base for tech-
nological parameters.

4.1 Selection of Network Structure and Parameters

Based on the input and output characteristics of the BPT net-
work, two BP networks that have four input nodes and one out-
put node, but one or two hidden layers, respectively, were
constructed. Then, the structure parameters of two networks
were determined by separate iterative training. The comparison
of training results of the two networks is shown in Fig. 4. The

abscissa represents the number of iterative trainings and the or-
dinate is the root-mean-square error of the system during the
training process. It can be seen that the single hidden layer net-
work is better. For the single hidden layer network, the error is
less than 0.01 after 10,000 time trainings, and there is no vi-
bration. But the error is still 0.08 after 18,000 time iterative
trainings, and the vibration is very serious for the double hid-
den layer. Figure 5 shows the comparison of the system error
and training cycles in a single hidden layer network by varying
the learning rate η (Fig. 5(a)) and the number of hidden nodes
(Fig. 5(b)) when the momentum factor was fixed as 0.9. It 
can be deduced that the system error and training cycles are
comparatively small when the parameters are η: 0.07, α: 0.9,
and hidden nodes: 8. Considering many factors, including sys-
tem error and training cycles synthetically, the structure of the
BPT network was determined as a three-layer network, that is,
4 × 8 × 1.

Fig. 4 Comparison of training results of two kinds of BPT networks η: 0.3, α: 0.6. (a) double hidden layers,(b) single hidden layer

Fig. 5 The system error and training cycles vs variable parameters in the single layer network

(a) (b)
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4.2 Verification of the Prediction Capacity of the Network

After the learning process, the connection weights and
threshold values of the BPT network were determined (Table 2).
It can be concluded that the absolute values of the weights in
lines 1 and 4 are comparatively larger than those in lines 2 and
3, that is to say, the pouring temperature and the deforming pres-
sure have larger influence on the deferring period before apply-
ing pressure among the four parameters, and the deforming
pressure can be adjusted by the pouring temperature and the de-
ferring period before applying pressure. The prediction results
are shown in Table 3. According to Table 3, the relative error is
all under 1.35%, that is the discrepancy between the expected
value and the values from the neural network is within 0.01 to
0.7 seconds, which can satisfy the practical needs. The above
analysis shows that the key parameters of liquid extrusion can be
predicted by establishing the knowledge base on the neural net-
work, by which the forming quality can be controlled stably. Ac-
cording to the prediction data, the experiments can be smoothly
performed, and the results are good.

5. Conclusions

From the present investigation, the following conclusions can
be obtained.

Table 2 The connection weights and threshold values of BPT networks

Hidden node 1 2 3 4 5 6 7 8

Input layer 1 −2.2622 −0.1511 −0.4185 5.2297 1.5976 1.8941 7.2771 −1.2575
2 0.1901 −0.4703 −0.7020 1.8867 −1.5194 1.3923 −3.9804 −2.4602
3 −0.1649 0.8051 1.4047 −2.2835 −0.7045 0.3588 −1.8824 −1.0130
4 0.3028 −9.3919 −5.2928 0.7301 −3.2593 1.9019 −8.8934 −3.8406
θi −0.0840 −4.9216 −2.6576 −2.0709 −1.8764 3.4380 −11.8882 0.4328

Output layer 1 −1.5432 3.4086 −5.0954 5.4361 2.8697 6.9991 −7.2976 −3.7941
θk −2.1418

The network parameters η:0.07, α:0.9

Table 3 The prediction results of BPT networks

t (s)

T1 °C T2 °C v (mm/s) F (MPa) Practical Predicted Relative error

680 160 4 114 45 44.8574 0.00316977
690 180 3 105 50 50.6771 0.0135425
700 150 3 117 55 55.0884 0.00160739
710 200 5 100 64 64.3220 0.00503121
720 180 4 105 64 64.5377 0.00840231
720 170 4 100 55 55.0828 0.00150573

• In this paper, the knowledge base of liquid extrusion for
shaping tubes has been established on the basis of the arti-
ficial neural network, by which the key process parameters
of this technology can be predicted successfully. The dis-
crepancies between the predicted value and expected value
of the deferring period before applying pressure are all
under 0.7 s. The prediction results are encouraging.

• The establishment of a knowledge base shows good learn-
ing precision and generalization and lays a foundation for
the optimum controlling of the liquid extrusion process.
Meanwhile, it is very useful for guiding the practical appli-
cation of the process.
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